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ABSTRACT 

The concept of an asymptotic dispersion relation 

associated with multi-Regge asymptotic behaviour is 

introduced. A particular example for the six-particle 

amplitude is derived in detail. In this example there are 

forty-four distinct spectral contributions, each of which is 

expressed as a triple integral over physical region 

invariant variables. The integrands are just the 

corresponding invariant dispersion denominators together 

with three-fold discontinuities which are expressed as 

integrals of physical scattering functions and their 

conjugates. 
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2. Introduction 

Experience with quantum electrodynamics suggests that 

the divergence problems of quantum chromodynamics will be 

resolved only by making incisive use of the principles of 

Lorentz invariance, unitarity and analyticity. These 

principles are formally satisfied by the individual terms of 

the QCD renormalized perturbation expansion, but the 

severity of the mass-shell infra-red divergences is 

generally thought to require a non-perturbative formalism to 

define the theory. On the other hand, non-perturbative 

approaches which seem to have the most potential for 

explicit calculation such as bag models and lattice theories 

disrupt the basic principles mentioned above and hence may 

not yield a satisfactory resolution to the divergence 

problems. 

Dispersion relations provide a well-structured 

non-perturbative framework that retains the properties of 

Lorentz invariance, unitarity and analyticity. In the 

context of non-abelian gauge theories (with the Higgs 

mechanism operating) these relations have been found to 

provide a highly efficient and practical way of generating, 

in reorganized form, the asymptotically dominant (leading 

log) contributions of perturbation theory at high energy. 

One may see this by comparing, for example, the sixth and 

eighth order calculations of Lipatov et al. 1 with the more 

traditional Feynamn diagram calculations. 2 
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But beyond this matter of practical expediency 

dispersion relations have the important virtue that they can 

naturally incorporate the general property of Regge 

asymptotic behaviour. Thus especially and particularly in 

the area of asymptotic behaviour the dispersion relations 

provide a natural vehicle with which to approach the 

problems of QCD. Since the perturbative calculations with 

massive (Higgs mechanism) gluons indeed lead to Regge 

asymptotic behaviour, a general multi-Regge formalism can be 

combined with the dispersion relations to formally sum 

infinite numbers of perturbative terms. Combining this 

procedure with the massless limit one obtains a framework in 

which the principles of Lorentz invariance, analyticity and 

unitarity are used to sum infinite sets of infra-red 

divergent QCD perturbation theory diagrams. 

It has recently been shown3 by one of us (A.R.W.) that 

the mass-shell infra-red divergences of QCD can be 

successfully controlled and analyzed within this framework. 

The analysis leads directly to confinement and to chiral 

symmetry breaking, with high-energy diffractive scattering 

shown to depend significantly on both the gauge group and 

the fermion content of the theory. The consequent 

connection between QCD and the Reggeon Field Theory Critical 

Pomeron makes the experimental measurement of diffraction 

scattering at 5-p collider energies potentially very 

significant. 4 
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The dispersion relations developed in the sixties were 

useful in certain special contexts, but proved inadequate as 

a practical basis for dynamics. The two principal 

difficulties with those earlier dispersion relations were 

first the break-down of two (or more) variable dispersion 

relations of Mandelstam type when Regge trajectories were 

infinitely rising and second the occurrence of complex 

domains of integration. This second difficulty involved not 

only the practical difficulty of dealing with complicated 

formulas for these complex regions, but the further and 

deeper problem that some of the functions occurring in the 

discontinuity formulas must be evaluated on unphysical 

sheets. Unphysical sheets are fraught with uncertainities 

and any attempt to make serious use of them has always 

seemed impractical. 

These technical difficulties can apparently be largely, 

if not completely, circumvented if one is specificaly 

interested in the question of the dominant Reww behaviour 

in certain multi-Regge regimes of phase-space and, 

accordingly, designs dispersion relations to display 

precisely these particular terms. Many-variable dispersion 

relations are certainly needed for this purpose. However, 

the problem with infinitely rising Regge trajectories is 

avoided by using a many-variable generalization of the 

earlier fixed-t dispersion relations instead of 

many-variable dispersion relations of the Mandelstam type. 

Fixing generalized "t-variables" and certain other variables 
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has the important added effect of burying many of the most 

troublesome singularities in inaccessible regions. In 

addition most, and very possibly all, of the remaining 

complex singularities appear to be eliminated by going to 

the asymptotic regime. The resulting "asymptotic dispersion 

relations" were first introduced by us in Ref. 5. 

Our original description of the asymptotic dispersion 

relations was both abstract and brief. Many details crucial 

for their application were not given. In view of the 

above-mentioned applications to QCD it seems now appropriate 

to set forth a more detailed account. We begin on a 

concrete note by giving here a complete description of the 

asymptotic dispersion relation in a particular case. This 

case is sufficiently complicated to illustrate the general 

ideas, yet sufficiently simple to be easily described in 

full. It is the case of the six-particle amplitude in a 

particular multi-Regge region. In this case all the needed 

multiple discontinuity formulae have been derived both from 

physical region S-Matrix methods7 and from Axiomatic Field 

Theory. 7 

This paper is intended to be self-contained. A reader 

wishing to understand the applications that have been made 

to QCD can begin here. 

TO explain the general concept of an "asymptotic 

dispersion relation" let us consider the long-established, 

fixed momentum transfer, dispersion relation for a 

four-particle amplitude A(s,t) that describes the scattering 
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of two spinless particles. The analyticity property most 

immediately derived from field theory8 is this: for fixed 

spacelike t and sufficiently large s the function A is 

analytic in the "cut-plane." That is A(s,t) has a domain of 

analyticity D: 

D = {lsl>so, lm s # 0, t fixed < 01. (1.1) 

Therefore applying the Cauchy formula to the contour shown 

in Fig. 1.1 one obtains 

ds'A(s',t) 
2s 

ds'A(s',t) 
(s'-s) + 2ai I (s'-s) 

where I+ and I- are respectively "right" and "left-hand" 

cuts 

I+ = {lm s = 0, so < Re s < R} 

I- = {lm s = 0, -R < Re s < - so} (1.3) 

and A(s,t) is the associated discontinuity of A(s,t). 

Considerable effort has been devoted to the study of 

the last two integrals in (1.2). Many applications of 

analyticity' depend on extending D down to small s and 

establishing a domain of analyticity in the neighborhood of 

the origin. The detailed results depend on the particular 

mass spectrum of the theory. The outer integral, over 

Isl=R, reflects the subtraction content of the theory. In 
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the context of Axiomatic Field Theory it can be proved 9 that 

A(s,t' is polynomially bounded and that at most two 

subtractions are required if t is suitably restricted. 

However, if the theory is Regge behaved and we wish to study 

only this behaviour then we can essentially forget about the 

last two integrals in (1.2) for the following well-known 

reasons. 

Suppose that the amplitude A(s,t) is Regge-behaved: 

A(s,t) 
1 s-p 

$+(t)sa(t’ + B-(t) (-s)a(t’ (1.4) 

Suppose also that somewhere in the interval ta<t<tb, the 

quantity Re a(t) increases through -1, then one has in the 

full interval 

ds'A(s',t) < 
(s'-s) 

while in some subinterval 

Ratt)+‘, , Re u(t)<-1. (1.6) 

Consequently to evaluate the leading Rewe behaviour of 

A(s,t) from (1.2) one can begin with t such that Re e(t)<-1, 

and first take R to infinity. This leaves only the first 

three integrals in (1.2). They can be analytically 

continued to a value of t such that Re u(t)>-1. Then (1.5) 

gives a non-dominant Regge contribution. Thus one obtains 

an asymptotic dispersion relation 
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A(srt) = 2ni I 
“S ds'A(s',t) 

(s'-s) + 2*i I "S 
ds'A(s',t) + A 

(s'-s) 0, (1.7) 
+ 

where the Regge behaviour of A0 is associated with exponents 

a(t):-1. For this result the exact choice of so in (1.7) is 

irrelevant. 

An important feature of (1.7) is that the discontinuity 

A(s,t) can be expressed as an integral over real physical 

variables of a function constructed from physical scattering 

functions and their conjugates: 

A(s,t) = I: I dpmIAm12 
m 

where de, represents the appropriate phase-space integration 

measure. Note that the explicit integrals in (1.7) do 

contain the cuts (in the s-plane) which the Regge behaviour 

(1.4) explicitly exhibits. 

The aim of this paper is to describe a generalization 

of (1.7) and (1.8) to the six-particle amplitude. The 

explicitly displayed integrals, have real integration 

regions and explicitly exhibited discontinuity formulas, and 

are required to contain all contributions that have the cut 

structure required for certain multi-Regge behaviour. The 

residual function A0 is required to be such that it can not 

contribute to the leading multi-Regge behaviour in a certain 

asymptotic regime. In general there will be a different 

asymptotic dispersion relation for each multi-Regge 

asymptotic regime. This is briefly discussed in Section 3 

and is more fully discussed in Ref. 5. 



-9- FERMILAB-Pub-82/19-THY 

In a gauge theory (with the Higgs mechanism operating) 

the presence of massive vector gluons allows the asymptotic 

dispersion relations to be used directly in perturbative 

calculations. It can be shown 1 that the leading log 

asymptotic behaviour of A(s,t) originates from the 

(multi-Regge) region of the phase-space n,, in (1.8), where 

the function An satisfies our multiparticle generalization 

of (1.7). The multi-Regge behaviour of the function An is a 

generalization of (1.4), and is generated by the multi-Regge 

regions of other multiple discontinuity integrals. 

Consequently, a perturbative (high-energy) expansion can be 

built up entirely through the asymptotic dispersion 

relations. This is essentially the program initially begun 

by Lipatov and co-workers, 1 and considerably advanced by 

Bartels.1' 

Alternatively, the complete set of asymptotic 

dispersion relations can be used to set up a general complex 

angular momentum and helicity formalism for multiparticle 

amplitudes. The dispersion relations are used to decompose 

these amplitudes into spectral components each of which can 

be shown to have a generalized 'Froissart-Gribov" 

continuation of its partial-wave amplitudes. 11 These latter 

amplitudes then provide the basis of a (generalized) 

Sommerfeld-Watson representation. In addition 

"cross-channel" unitarity equations can be analyzed in full 

and a set of "reggeon unitarity" equations derived for each 

Froissart-Gribov amplitude. These equations allow the 
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perturbative gauge theory calculations of Lipatov et al. to 

be seen as simply a building up of the Regge cut structure 

required by Lorentz invariance, analyticity and unitarity. 

These technical developments provide the basis of the QCD 

infra-red analysis referred to above. 

The lay-out of the present paper is as follows. In 

Section 2 we describe a many variable generalization of 

Cauchy's formula known as the Bargman-Weil integral 

formula12 and reduce it to a more simple form needed in the 

asymptotic dispersion relations. In Section 3 we briefly 

describe the variables used in these dispersion relations. 

A full description is given in Appendix A. Section 4 

contains the application of the Bargman-Weil formula to the 

six-particle amplitude. In that Section we consider only 

the terms arising from the normal-threshold cut structure. 

This structure leads to a total of forty-four "spectral 

functions" in the dispersion relation. In Section 5 we 

discuss the Steinmann relations and the way in which a 

certain class of complex cuts gets buried. Finally in 

Section 6 we discuss in general how complex singularities 

and added contributions are eliminated by passing to the 

asymptotic regime. Reasons are given for believing that the 

displayed integrals of Section 4 give all the contributions 

that can contribute to the multi-Regge behaviour but no 

rigorous claim is made. Appendix A contains detailed 

kinematic formulas, and Appendix B contains the required 

discontinuity formulas. 
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In this paper we shall discuss neither the applications 

of the dispersion relation, nor its generalization to higher 

amplitudes, or even the diagrammatic notation of hexagraphs 

used to count spectral contributions. Some discussion of 

these points can be found in Ref. 4 and Ref. 5. However, we 

hope to extend the detailed account begun in the present 

paper to these topics in the near future. 

2. THE BARGMAN-WEIL INTEGRAL FORMULA 

The dispersion relation that we derive in this paper, 

together with its generalization to higher-order amplitudes 

described in Ref. 5, is based on a many-variable 

generalization12 of the Cauchy integral formula. This 

"Bargman-Weil integral formula" allows one to express a 

function of n complex variables that is analytic in a domain 

bounded by smooth boundaries (of a certain kind) as a sum of 

integral contributions. Each contribution is an integral 

over a region of n real dimensions. The integrand is a 

product of n Cauchy-type denominators times the 

boundary-value of the function itself times a Bargman-Weil 

numerator function. This numerator function is a general 

feature of the many-variable formula and it is not uniquely 

defined. Certain special properties of our particular case 

will allow us to eliminate this numerator function and thus 

obtain simple uniquely defined formulae as our end result. 
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We now describe the Bargman-Weil formula. The form we 

give is not the most general one possible but it is 

sufficient for our purposes. Suppose a function 

f(z)=f(zl,..., zn) is analytic in a domain D that consists of 

the entire space c" of the n complex variables zi minus a 

set of cuts {Cj]: 

,) D = {z E 63"; s ,k Cj, j=l,..,N} . (2.1 

Suppose that for each cut Cj there is a function zj (2) , 

analytic in D and Cj such that C. 
3 

is the set of points where 

Zj(z) is real: 

c. = (2.2) I Iz E c n; lm Z(zj) = 0). 

Suppose that the intersection of every subset of n+l of the 

cuts Cj has real dimension less than n. Finally suppose 

that for sufficiently large R, f(z) is identically zero for 

IzI>R, where 1sl2 = zlzi12. (This condition can always be 
i 

satisfied by introducing cuts Cj that define the various 

sides of a large "box" and setting f(z) equal to zero 

outside of this box.) 

Let h be a subset of n indices of the set (l,...,N) and 

write the corresponding set of Zj(z)'s as (Z:(s),...,ZA(z)). 

f the cuts 

azi/azi I is 

Let I, be the set of points s that lie on all 0: 

C.r (jcX) and such that the determinant 
3 I 

non-zero: 

Ih"{ZE n; lm Zj (z)=O, (jEX), laz~(2)/az,lzol (2.3) 

The determinant condition in (2.3) allows one to use the set 

of variables Xt=Re Zi(jsX) as a set of local coordinates on 

II. If Azl, ..,Zn) is the local inverse mapping from the 
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set of variables Z;(z) to the set of variables s then at any 

point z of Ix that lies on none of the other cuts C., j $h, 3 
one can define the n-fold multiple discontinuity 

A"(Z) = ~(-l)"'f(ZA(X:(Z)+iO,...,X~(z)+iO)), (2.4) 

where the +iO and -iO indicate the boundary-value, in the 

variables ., zx from the upper and lower 
3 

half-planes 

respectively, n' is the number of arguments X;-i0, and the 

sum is our all 2" combinations of signs in the variables 

X3 2 i0. 

If, for each X, the entire set of points Ix is the 

image under a single continuous one-to-one mapping 

2(X1,... ,Xn) of an n-dimensional region Ii in X-space then 

the Bargman-Weil formula asserts that for all points z in D 

f(z) = 1 fh(z) , 
A 

(2.5a) 

where 

x A'(z'(X))D"( VA(X)) 
A A ' (2.5b) 

(xl-z1 (2) ) . . . (X,-Z, (2) ) 

where D'(z,s(X)) is the Bargman-Weil numerator function 

mentioned above. Note that the requirement that the 

multiple-discontinuity on I1 of the function f(z) defined by 

(2.5) agree with the original multiple-discontinuity 
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D'(z(X);z(X)) = 2 
I 
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(2.6) 

The expression (2.5) holds also when some or all of the 

regions IA are not the images of single one-to-one mappings 
A z , but are rather the unions of images of several such 

mappings, provided that in such cases the sum in (2.5) runs, 

for each A, over a collection of separate mappings z"(X) and 

corresponding regions Ilx that combine to cover exactly once 

all the points z of Ix. For this result to hold it is 

important that if z;(X) and s;(X) are two such mappings and 

if, for some X, s;(X) # s;(X) then 

D'(s;(X),s;(X)) = 0 . (2.7) 

This property ensures that the contribution to (2.5) 

associated with a mapping z;(X) will give no contribution to 

the multiple discontinuity at z2 =z'(X) even though all the 2 

denominators in (2.5) vanish at the inverse image X of z2. 

The Bargman-Weil numerator function is constructed so that 

it satisfies properties (2.6) and (2.7). It has, therefore, 

the effect of properly sorting out the contributions from 

the various branches s:(X) of the inverse of ZA(z) over Ix. 

The Bargman-Weil numerator D'(z,z') is not uniquely 

defined. It can be taken to be the determinant of any array 

of functions Ptj(z,z') that satisfy 
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z;(z)-z;(z') = c Pji(Z,Z') (zi- 2;) . (2.8) 

Note that 

(2.9) 

and hence (2.6) is satisfied. If we can find a z'fz such 

that Z~(zl)=Z~(z) i=l,..,n then the columns of the matrix 

P;i(z,z') are linearly dependent and the property (2.7) 

follows. 

In our case the multi-valuedness of the inverse 

transformation associated with (2.7) does not arise. 

Moreover the Bargman-Weil numerator enjoys the following 

property: 

D'(z',z) = D'(z,z)+(Z:(z')-Z~(z))E~(~' ,z)+... 

. ..+(Z~(z')-Z~(z))E~(z' ,z), (2.10) 

where the E? i=l 1 ,..,n are entire functions of z and z' (in 

our case polynomials). Consequently (2.5b) can be expressed 

in the form 

fX(z) = l 
dXl...dXn A"(s'(X)) 

-- 
(2Tli)n / A A 

(xl-zl(z)). . . (Xn-Zn(Z)) 
+ A; r (2.11) 

IA 

where A A 
0 = iilAti and 
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A 1 
AOi = (21.1ijn 

dXl... dXn Ah(sX(X))E;(z(X),z) 

lazA/a2.1jpi (x~-z~(z)) * 
(2.12) 

IA 

A Each function Aoi has only (n-l) Cauchy denominators 

and hence has a null n-fold discontinuity at s=x=zA(x). Thus 

it does not exhibit the "maximal cut structure" 

characteristic of the multi-Regge behaviour with which we 

shall be concerned and hence can be absorbed into the term 

A0 which will be the generalization of that appearing in 

(1.7). 

3. CHOICE OF VARIABLES 

The problem of what variables to use in multiparticle 

dispersion relations has been much discussed. The efforts 

to obtain mass-shell global analyticity domains from the 

primitive analyticity domains of field theory suggest the 

use of momentum variables. However, the most important 

singularities, namely the normal threshold branch-points, 

are in invariant variables. But physical-region 

normal-threshold branch-points are present in eleven 

different invariant variables for a 2-4 process and in 

sixteen invariant variables for a 3-3 process. Since for a 

six-particle amplitude there are only 3x6-10=8 independent 

variables there seems to be no completely natural. set of 

invariant variables. 
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Multi-Regge theory 11,12 leads to the introduction of 

variables defined by sequences of Lorentz transformations. 

In certain physical regions these are simply sequences of 

rotations. Sequences of resonance production (with 

arbitrary spin) are naturally expressed in terms of these 

variables, and a general complex angular momentum theory can 

be developed. A detailed description of these "Toiler" 

variables can be found in Appendix A. Here we give only a 

brief description together with the asymptotic forms needed 

to derive the asymptotic dispersion relation. 

In our generalization of the "fixed-t" dispersion 

relation (1.7) to an n-particle amplitude a set of (n-3) 

momentum transfer variables ti is kept fixed. The (n-3) 

variables ti are associated one-to-one with the internal 

lines i of a tree diagram which we refer to as a Toiler 

diagram (see Fig. 3.1, for example). 

In general a Toiler diagram consists of n external 

lines, one for each particle of the process, n-3 internal 

lines i, one for each variable ti, and n-2 vertices. Each 

vertex has exactly three lines incident upon it. The 

variable ti is the square of the momentum energy Qi flowing 

along line i if momentum-energy is conserved at each vertex 

of the diagram. The remaining variables we wish to 

introduce are associated with sequences of Lorentz 

transformations that connect the rest frames of the various 

particles of the reaction. Such a sequence can be 

represented by a path in the Toiler diagram that connects 
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the lines associated with these particles. 

For each external line j there is a rest frame in which 

the associated momentum energy vector is pj=(m j,O,O,O). For 

each internal line i there is a "rest frame" in which the 

momentum-energy Qi flowing along line i from left to right 

is (O,O,O,+J-ti). 

A path from one external line to another represents a 

sequence of Lorentz transformations that takes the rest 

frame of the first line to that of the second by passing 

through the rest frames of the internal lines on the path. 

If the momenta associated with all internal and external 

lines lie in the (0,3) plane then we need only those 

transformations z.. that are boosts in the (0,3) plane from 
17 

the rest frame of line i to that of line j. These boosts 

depend only on the t-variables and the external masses. To 

pass to the general case we need in addition, for each 

internal line i, a (0,l) boost Bi that leaves the rest frame 

form of Qi unchanged, and for each vertex a (1,2) rotation 

w.. that connects the rest frames of lines i and j. 
11 

Exact expressions for invariants as functions of the 

ti, Bi and wij are given in Appendix A. For the rest of the 

paper we will use only the following "asymptotic" formulae. 

Writing xi =coshBi then when Izil+m \di we have 

2pi*pj = cij(t,w) n fijk zk + ;;r;;eo; lower order 
k k 

(3.1) 

where the variables t={ti} and w={wij} will be held fixed in 
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our dispersion relation, and f.. 
ilk 

is one if the internal 

line k lies on the direct path in the diagram that connects 

the external line i to the external line j, and is zero 

otherwise. 

The momentum-energy vectors of the initial particles Of 

the reaction are taken to be minus the physical 

energy-momentum vectors. The sign conventions for the si 

are fixed by choosing zill to be the physical region for a 

particular process. For the six-particle amplitude we 

choose that process to be the one shown in Fig. 3.1 where 

the lines entering from the bottom of the diagram, that is 1 

and 6, represent initial particles and those exiting from 

the top, that is 2,3,4 and 5, represent final particles. 

We shall adopt this convention throughout this paper.) 

Thus the signs of the c. 
lj 

in (3.1) are fixed by the 

conditions 

cij > 0 for i,js{2,3,4,5} 

cij > 0 for i,jE{l,6} 

cij < 0 otherwise . (3.2) 

The dispersion relation involves the entire large Izi] 

region. Thus the real regions of momentum-energy space 

generated by reversing the signs of the zi also enter. 

Reversing the sign of one zi (marked by a cross in Fig. 3.2) 

twists the corresponding right half of a Toiler diagram by 

180' relative to the left half as illustrated in Fig. 3.2. 

This leads to a new physical region if the particles 



-2o- FERMILAB-Pub-82/19-THY 

entering from the bottom are again interpretated as initial 

and those emitting from the top as final. We refer to such 

a twist of a Toller diagram as a signature twist. 

4. THE ASYMPTOTIC DISPERSION RELATION 

The Bargman-Weil formula of Section 2 will now be 

applied to the six-particle amplitude considered as a 

function of the variables defined by the Toiler diagram of 

Fig. 3.1. The variables tl, t2, t3, w12, w23 will be held 

fixed and so the amplitude A(p1,...p6) will be a function of 

zlt 22 and =3 only (for simplicity we take the external 

particles to be spinless--the generalization of the final 

formula to spinning particles will be obvious). We write 

therefore 

A(p(s)) = f(s) , (4.1) 

were 
f(z) = f(z1,z2rz3). (4.2) 

In this Section we shall consider only the 

normal-threshold branch-points. The higher-order Landau 

singularities corresponding to triangle diagrams, box 

diagrams etc. will be considered in Section 6. The normal 

threshold cuts are defined by 

lm s. = 0 , 
1 (4.3) 

where s. 
1 

is the square of some sum of pis. Discontinuities 

across the cut (4.3) vanish outside of the region 

Re s. > M; > 0 , 
7 (4.4) 
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for some "threshold" mass M.. 
3 

For the Toiler diagram of Fig. 3.1, the various 

possible normal threshold cuts and their asymptotic forms 

(up to constant coefficients) are listed below: 

S 23 = (p2+ P3j2 3 z1 

' 234 = (P2+P3+P4) 
2 

* =1s2 

' 24 = (p2+ P4j2 J- z1z2 

'2345 = (P2+P3+P4+P5) 
2 

* '1'2'3 

'25 = (P2+P5) 
2 

* '1'2'3 

'245 = (P2+P4+P5) 
2 

.J- '1'2'3 

s345 = (p3+P4+Pg) 
2 

* =2=3 

'235 = (P2+P3+P5) 2 
J- '1'2'3 

s35 = (P3+P5) 
2 

J- '2'3 

s34 
2 

= (P3fP4) J- z2 

s45 = (P4+P5J2 fl z3 . (4.5) 

There will be analagous cuts associated with the 

diagrams obtained by making all possible combinations of 

signature twists with respect to the internal lines of 

Fig. 3.1. Each of the cuts will have a dominant term 

proportional to zl, z2, z3, z1z2, z2z3, or z122z3' In our 
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discussion we shall keep only these leading terms, since our 

intention is to obtain the dispersion relation that controls 

the leading asymptotic Regge behaviour. The cuts of f(z) 

are therefore in the variables 

Z,(Z) = zl, Z2(Z) = z2, Z3(Z) = z3 

Z4(Z) = z1z2, Z,(Z) = z2z3, Z6(Z) = z1z2z3 . (4.6) 

We shall define the principal contributions to the 

dispersion relation to be those with the maximal number (in 

our case n-3=3) of asymptotically distinct normal-threshold 

cuts. These contributions are the only ones that can lead 

to the 3-fold multi-Regge behaviour that we wish to use the 

dispersion relation to examine. 

For reasons that will be explained in the following 

section we impose the generalized Steinmann relations: the 

multiple discontinuity across a set of cuts is required to 

vanish if any pair of cuts in the set define overlapping 

channels. (A pair of cuts define overlapping channels if 

and only if neither of the two complementary sets of 

particles defined by one cut is contained within either of 

the two complementary sets of particles defined by the other 

cut.) 

The generalized Steinmann relations entail that each 

principal contribution corresponds to one of the following 

triads of asymptotic normal threshold cuts 
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21' 21Z2' '1'2'3 

=3' =3=2' '1'2'3 

=2' =2'3' '1'2'3 

=2* 2221' '1'2'3 

21, 23, 212223 

212.2, 222-j* 2122~3 

22' z122r '3'2 
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(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

(4.7e) 

(4.7f) 

(4.79) 

Consider first the contribution of the triad (4.7a). 

Then using the notation of Section 2, with X represented by 

a we write 

z;(z) = Zl(Z) = z1 

z;(z) = Z,(Z) = z1z2 

z;(z) = Z6(Z) = z1z2z3. (4.8) 

Equation (2.8) then involves a set of functions pgi(z,x) 

that satisfy 

(y-x1) = (zl-xl) Ptl + (z2-x2) PT2 + (z3-x3) PT3 

(z1z2-x1x2) = (zl-x1) P& + (z2-x2) P;2 + (z3-x3) P;3 

(z1z223-x1x2x3) = (zl-x1) P;l + (z2-x2) P;2 + (z3-x3) P;3 . 

(4.9) 

There are many solutions, but a symmetric choice is 
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P&= (1, 0, 0) 

P;i= 
( 

$ (z2+x2), + (zl+xl), 0 1 

$ (22~z2+21x2+z2x1+2~~~2~ 
) 

* (4.10) 

The determinant giving the B-W numerator is therefore 

Evaluated at zi=xi i=1,2,3, (4.11) gives 

2 
Da(x,x) = x1x2 , 

Using the notation 

my) = (x1,x1x2,x1x2x3) 

(4.11) 

(4.12) 

(4.13) 

one may express the determinant in (2.5) as 

1 axa/ax I = xfx2 (4.14) 

which agrees with (4.12), as demanded by (2.9). 

One might now try to insert (4.11) and (4.14) directly 

into (2.5) in order to obtain an expression for the 

principal contribution associated with the triad (4.7a). 

However, in Section 2 it was stated that we would instead 

use (2.11). But why is (2.11) correct and (2.5) wrong? To 

examine this question let us apply the original formula 

(2.5) to the simple function 
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f(z) = [(zl- Cl) (zl-c2) (z1z2-c3) (z1z2-c4) (z1z2z3-c5) 

1 
-1 

x (z1z2z3-c(j) x i;l 8+&-R) . (4.15) 

One finds that in this case the powers of z in the numerator 

in (2.5) cause certain contributions from the combinations 

of the surface Isij=R and the pole singularities to remain 

important even as R-tm. Superficially it might seem that f(z) 

has such a strong fall-off when IZil=R+= that any surface 

integral at infinity would be negligible. But this turns 

out to be true only if we exploit (2.10) and write the 

Bargman-Weil formula in the form (2.11). 

The form (2.11) depends on the validity of (2.10). For 

the triad (4.7a) it can easily be checked that (2.10) holds 

with Da(z,x) given by (4.11): one may take (non-uniquely) 

E; = ~2(5x1x2-~2~1+~l~2-ZlZ2) 

E; = z l (21+x1) 

E;=O. (4.16) 

Thus, for the principal contribution due to, for example, 

the set of cuts in '23' '234' s2345 (which satisfy the 

generalized Steinmann relations and, according to (4.5), are 

of the type (4.7a)) one can write 
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dXldX2dX3 Aa(x(X) 
_____-_ 

(X1-Z? (2) ) (x2-z; (2) 1 (x3-z;(z) ) 

1 ds;3dsi34ds:345 Aa(s;3,si34,s;345) 
= 

(2+i)3 I (%3-'23 )(%34-'234) (s;345-'2345) 
(4.17) 

where s23(zl,)sz~(z), s234(21’22)~z~(21’~2) t 

s23454(21r~2’~3). This formula is a simple and natural 

generalization of (1.7) in that it contains simple invariant 

denominators and in the numerator only the multiple 

discontinuity itself. 

The same algebra and argument applies also to the 

triads (4.7b) I (4.7~) and (4.7d). For the triad (4.4e) one 

has 

De(z,x) = 
2123 + m + a + ~ 
-g-- 6 6 3 (4.18) 

(4.19) 

Thus (2.12) holds and (2.11) gives for the principle 

contribution a form analogous to (4.17). The case (4.4f) is 

more complicated but goes through in the same way with the 

choice 
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f f 1 1 
D (2,x) = D (x,x)+(zlz2-x1x2) b z2z3+ n z2x3- 

1 1 
- n x2=3+ 5 x2x3 > 

+ (z2z3-x2x3) ( 1 1 1 1 
K s1a2- iz z1x2 + E x1s2+ T xlx2 ) 

+ (Z1Z2Z3-XlX2X3) - (4.20) 

Finally, for (4.79) one may take 

(4.21) Dg(z,x) = Dg(x,x) + (z2-x2) 12+3x 
) 4 24 2' 

and hence (2.11) can again be obtained. 

The generalized Steinmann relations actually imply that 

each of the triads listed in (4.7) have a unique set of S. 7 
cuts, in the physical region of Fig. 3.1, to which they 

correspond. They are, in the order of (4.7) 
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'23' '234' '2345 

545' 5345' '2345 

(4.22a) 

(4.22b) 

s34t s345' '2345 (4.22~) 

s34t '234' '2345 (4.22d) 

'23l s45r '2345 

'24' '35' '2345 

(4.22e) 

(4.22f) 

null set (4.229) 

BY using the triads of invariants each principal 

contribution can be written in the form (4.17). The 

particular combinations (4.22) arise because all those 

invariants listed are positive when all the zis are 

positive. This follows from (3.1) and (3.2). 

If one reverses the signs of some zis one obtains a new 

physical region and a new set of positive invariants. For 

example, in the physical region given by the twisted Toller 

diagram of Fig. 3.2 the triads of (4.7) would correspond to 

the following triads of non-overlapping cuts 
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‘23* '1' S14sz1(-z2) r s236szl(-z2)z3 (4.23a) 

s45s=3’ s3fjs t-2,) 23, s236sz1(-z2) 23 (4.2313) 

null set (4.23~) 

null set (4.23d) 

s23*z1, 545sz3’ s236J’(z1) (-2,) z3 (4.23e) 

S14sZ1(-z2) t S36s(-z2)Z3r S236zz1(-z2)z3 (4.23f) 

s365s(-z2), s14~z1(-z2), s36J-(-z2)z3 (4.239) 

For each of the six additional physical regions obtained by 

further combinations of twists of the lines i=1,2,3 we 

obtain corresponding sets of non-overlapping cuts. Since 

they are simply obtained by twisting either the l-line or 

the 3-line or both with respect to either Fig. 3.1 or 

Fig. 3.2 three of the regions give sets of the form (4.22) 

while the other three give sets of the form (4.23). 

From (4.22) we obtain six principle contributions of 

the form (4.17) while from (4.23) we obtain five principal 

contributions. Altogether then we have 6x4+5x4=44 principal 

contributions to our asymptotic dispersion relation. Thus 

we can write 

1 
ds; dsi dsi AA(s' ,si 

A(pl,...p6) = 1 12 3 Al 2 
'Si3) 

A (2ni)3 (sil-sA1 ) (si 2-SA2 ) (“i 3-Sh3) 
(4.24) 

+ Ao 
where the sum over X is a sum over 44 triads of cuts in 
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invariant variables sx , sA and Y3- The integration 
1 2 

regions are over real values of the sx and extend from some 
i 

positive (but irrelevant) finite value to infinity. 

In the next Section we will discuss the discontinuities 

that occur in (4.24) and observe that they can be expressed 

as products of physical scattering functions and their 

conjugates integrated over physical intermediate states. In 

Section 6 we will argue that the higher-order Landau 

singularites do not give any additional principal 

contributions. 

Finally we note in passing that the non-equality 

encountered above of the numbers of triads of cuts 

associated with two physical regions related by a single 

twist (c.f. (4.22) and (4.23)) has the important 

consequence that signature properties of Regge singularities 

resulting from such cuts must be more complicated than those 

of four-particle amplitudes. 

5. DISCONTINUITY FORMULAE AND 

GENERALIZED STEINMANN RELATIONS 

The Bargman-Weil formula described in Section 2 applies 

to a function of n complex variables, with cuts lm Zj=O, 

j=l,... that enjoy the property that the intersection of 

each subset of n+l cuts has real dimension less than n. But 

all of the cuts lm Zi=O corresponding to normal thresholds 

are associated with real analytic functions Zi(z). Hence 
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they all contain the real n-dimensional set 

[z 
n : lm zi=O, Re zi sufficiently large, i={l,...n}}. 

This difficulty may be circumvented by giving each of the 

surfaces lm Zj=O a small displacement in imaginary space. 

(The tiny piece near each normal threshold is negligible.) 

Replacing each Zj by Zj+is; shifts each of the cuts slightly 

away from the real physical region and reduces the 

intersection region of any n of the normal-threshold cuts to 

an n real dimensional region lying close to the physical 

region. In addition, no (n+l) of these surfaces will 

intersect on any n-dimensional region. This fact is 

illustrated in Fig. 5.1. 

The original Steinmann relations13 refer to 

boundary-values obtained from certain off mass-shell cones 

in field theory. These relations have been extended to the 

Generalized Steinmann relation referred to in the last 

Section. These generalized relations hold for certain on 

mass-shell functions, which can be considered to be the 

boundary-values from all 2 11 sides of the eleven cuts (4.5) 

that enter the physical region of Fig. 3.1, and the similar 

boundary values corresponding to all 216 sides of the 

sixteen normal threshold cuts entering the physical region 

of Fig. 3.2. These boundary values, are used to form the 

3-fold multiple discontinuity functions AA(s 
ll' 2' 3 

sx sx ) 

occurring in (4.24). The 3-fold discontinuities have been 

calculated (independently) from both field-theoretic and 

S-Matrix principles. They are given in Appendix B. 
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The functions that satisfy the generalized Steinmann 

relations are initially defined by "algebraic" manipulation 

of unitarity integrals, rather than by analytic 

continuation. Hence, ' a priori, they need not be the 

boundary values that occur in the dispersion relation. A 

thorough discussion of this question requires a 

consideration of the higher-order singularities and so 

propertly belongs in the next Section. However, it may aid 

in the understanding of the discontinuity formulae listed in 

Appendix B and also better enplain the simplification 

achieved by writing asymptotic dispersion relations if we 

give a very brief heuristic outline of the origins of the 

boundary value functions6 (in the S-Matrix formalism). 

Let us write the S-Matrix as S=l+R+ and its hermitian 

conjugate as S+=l-R-. Then the unitarity equation SS+=l 

entails, formally, that 

R+ = - R- 
l-R- 

(5.1) 

= 1 (R-)" . (5.2) 

Using a conventional bubble diagram notation for R+ and R- 

and inserting intermediate states into (5.2) one obtains for 

all connected amplitudes (the notation is explained in 

detail in Appendix B) 
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=F7q =; m + &)--(4 --L-l - - c v+..i - - 
= CB- 

(5.4) 

where the sum is over all possible connected (minus) bubble 

diagram functions containing those intermediate state 

integrations allowed by the values of the external momentum 

variables of the m, amplitude. This last amplitude 

is, of course, the physical region boundary-value from above 

all normal-threshold cuts. 

The series (5.4) displays explicitly all possible 

normal threshold and higher-order Landau singularities, in 

the sense that new terms appear in the series whenever such 

a (generalized) threshold is passed. The sum of these new 

terms actually defines the discontinuity at such a 

threshold. Hence the boundary-value from underneath any 

particular normal threshold cut differs from i + : 
xc - 

which is given by the complete sum in (5.4), by those terms 

in (5.4) which have a phase-space integration in the 

relevant channel. Extending this argument, multiple 

discontinuities can be defined from (5.4) by keeping only 

those terms which have _ all the corresponding phase-space 

integrations. This leads directly to the formalae quoted in 

Appendix B but with some exceptions. For certain "bad 

boundary-values" an ambiguity arises in that boundary-value 

functions defined by this process and the analogous process 
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based on the hermitian conjugate version of (5.4) do not 

coincide. The ambiguity is directly due to bubble diagram 

functions that enter the series only as higher-order Landau 

singularities are encountered. The ambiguity can be 

resolved by imposing the generalized Steinmann relations and 

the result is the complete set of discontinuity formulae 

given in Appendix B. 

The "bad boundary-value functions" defined by this 

procedure are, however, known to be boundary values of 

functions that, in sufficiently small neighborhoods of the 

physical region, are only piecewise analytic. Thus the 

boundary values defined in different sectors of the real 

region are not connected by paths of analytic continuation 

that remain always close to the real physical region. Prior 

to the introduction of the asymptotic dispersion relations 

they appeared unsuited for use in dispersion relations that 

lacked complex cuts. It is remarkable, therefore, as we 

discuss in the next Section, that in the asymptotic 

dispersion relation represented by the integrals in (4.24) 

the bad boundary values enter only as the boundary values of 

the functions defined in the three-dimensional analogs of 

the small triangular regions illustrated in Fig. 5.1. These 

regions are everywhere close to the real physical domain and 

they shrink to zero as the small quantities sj in the 

arguments Zj+isj tend to zero. Consequently one may, in the 

framework of the asymptotic dispersion relations, enjoy the 

considerable simplifications entailed by the generalized 
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Steinmann relations without incurring the complications 

entailed by complex cuts. 

Higher order Landau singularities may in principle also 

give complex cuts arising from their occurrence in "good 

boundary-value" functions. This is briefly discussed in the 

next Section. 

6. HIGHER-ORDER SINGULARITIES 

As mentioned in the introduction, a long-standing 

difficulty with the idea of applying many-variable 

dispersion relations to many-particle amplitudes has been 

the complications generated by the higher-order 

singularities associated with triangle diagrams, box 

diagrams etc. Many years agO Fronsdal, Norton and 

Mahanthappa 15 showed that a straightforward application of 

the Bargman-Weil theorem to scattering functions leads 

in general to complicated contributions from non-real 

regions of momentum space. Evaluation of the associated 

discontinuities requires analytic continuation of some of 

the amplitudes appearing in the discontinuity formulae away 

from their original region of definition and into unphysical 

sheets. These sheets are fraught with unknown dangers and 

difficulties, and continuation into them appears 

impractical. Furthermore, complex contributions far from 

the physical region would be likely to ruin the generalized 

Froissart-Gribov continuations, upon which the development 
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of multi-Regge theory from the asymptotic dispersion 

relations is based. 11 

A principle virtue of the dispersion relation described 

above is that (apart from the generalized "subtraction term* 

A0 in (4.24) which results from surfaces at infinity, and 

sufficiently small finite surfaces) all the three-fold 

discontinuities are evaluated directly in the physical 

region. This is automatic for the normal threshold 

intersections described in Section 4. But it appears to us 

quite likely that these will in fact be the only terms that 

will have the asymptotic conbination of cuts that are 

required for the corresponding multi-Regge behaviour. 

There are two main points. The first concerns the bad 

boundary values referred to briefly in the last Section and 

defined precisely in Ref. 6. As we noted there "bad 

functions" have bad analytic properties. But each good 

function (in each real sector) has been shown to be the 

boundary-value of a single analytic function: the parts 

lying on the opposite sides of any singularity surface lying 

in the physical region are connected by a path of analytic 

continuation that makes an arbitrarily small detour around 

this singularity surface. In contrast the bad functions, 

like the bubble diagram functions from which they were 

constructed, have no such continuations, and hence are not 

boundary values of single analytic functions. 
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If we had to consider the cuts attached to the surfaces 

where the bad functions change their analytic form we would 

be in danger not only of disrupting the crossing properties 

of amplitudes (by the extension of the cuts to infinity) but 

also of obtaining complex contributions to our dispersion 

relation, with the ensuing problems already described above. 

If, however, we can show that the bad boundary-values are 

buried in the analogs of the small triangle of Fig. 5.1, as 

asserted in the last Section, then in the first place any 

contribution from the cuts involved in defining them will 

disappear from the integration region as the E. 
3 

tend to 

zero, in the second place these contributions to the 

dispersion integral will, in any case, only affect the value 

of the function inside the little triangle and hence have no 

bearing at all on the function outside this region. 

The bad functions are those that correspond to a 

boundary-value from below two 3+3 overlapping cuts and above 

two 2+4(or4+2) cuts, or from above the two 3+3 overlapping 

cuts and below two 2+4 (4+2) cuts. The possible bad 

configurations are shown in Fig. 6.1, where either the upper 

signs or the lower signs must be used throughout. 

Suppose first that, with the notation of Fig. 6.1, the 

z-variables associated with the four cuts are 

s1 2 c34s2' s2 = c35z2z3 

53 = c24z1z2, s4 = c25z1z2z3. (‘5.1) 

Then 
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5154 = c s2s3, c = '24'35 > o 
c34c25 ' 

(6.2) 

where c>O is implied by (3.2) (or more generally by the 

combination of Ilm sjl=O with the condition that Re s. is 
3 

above threshold). But (6.2) is incompatible with the sign 

requirements from Fig. 6.1 which are that 

lm sl, lm s4 > 0; lm s2, lm s3 < 0 , (6.3a) 

or 
lm sl, lm s4 < 0; lm s2, lm s3 > 0 . 

The incompatibility of the conditions (6.3) with (6.2) 

means that the region from which the boundary-value, 

represented by Fig. 6.1, is approached must, for 

sufficiently large Re zi, vanish (when the ej's of the 

proceeding Section are set to zero). The boundary value is 

indeed "hidden" inside a region of the form of Fig. 5.1. 

Thus the asymptotic dispersion relations neatly bury the 

regions of (complex) momentum space where the worst complex 

singularities occur. 

Box diagrams that do not map in a planar manner onto 

the Toiler diagram that we are considering must also be 

examined. For example, if the particles 3,4 and 5 of 

Fig. 6.1(a) are identified with particles 4,5 and 3 

respectively of Fig. 3.1, then 
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s1 = C45z3, 52 2 c-j52223 

s3 1 c25z1z2z3, s4 2 c252122z3 . (6.4) 

This is again incompatible with (6.3). But now the cuts in 

s3 and s4 that bound the bad boundary value region are in 

fact asymptotically equivalent. This means that 

sub-asymptotically these cuts are distinct, as illustrated 

in Fig. 6.2. However, the contribution of such a region to 

the dispersion relation would be associated with a triad 

that involves two asymptotically equivalent cuts. But 

triple-Regge asymptotic behaviour can not arise from such a 

triad, since this behaviour has the phase-structure of a 

function with three asymptotically inequivalent cuts. 

The discussion of the bad boundary configurations (6.1) 

and (6.4) covers, in essence, all of the possibilities and 

hence one finds that no bad boundary value complications can 

occur in the principal contributions to (4.24). 

The second main point to be considered when discussing 

complex singularities contributing to the principal 

contributions of (4.24) concerns the higher-order 

singularities occurring in the good boundary-value 

functions. More work is needed on this. But we think it 

likely that these singularities will not contribute to the 

asymptotic dispersion relations. For the triple 

discontinuity associated with the next most complicated 

contribution, namely that arising from two normal-threshold 

cuts and one triangle-diagram cut vanishes, while the 
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singularities associated with more complex diagrams tend to 

be shielded by the cuts associated with less complex ones, 

due to the hierarchy structure. We hope to be aboe to give 

a detailed proof that higher-order singularities do not give 

principal contributions to asymptotic dispersion relations 

in the near future. 
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APPENDIX A. ANGULAR VARIABLES 

To introduce, precisely, the variables used in the 

text, it will suffice to define standard frames l-6 as 

indicated in Fig. Al. These frames are defined as follows: 

Frame 1 

Q, lies in a rest frame, Pl and P2 lie in the (0,3) plane 

Frame 2 

Ql lies in a rest frame, P3 and Q2 lie in the (0,3) plane 

Frame 3 

Q2 lies in a rest frame, P3 and Q2 lie in the (0,3) plane 

Frame 4 

Q2 lies in a rest frame, P4 and Q3 lie in the (0,3) plane 

Frame 5 

Q3 lies in a rest frame, P4 and Q2 lie in the (0.3) plane 

Frame 6 

Q3 lies in a rest frame, P5 and P6 lie in the (0,3) 

plane. 

We next define sets of Lorentz transformations as 

follows: 

A. A (0,3) boost nik i=1,...6 takes particle i from its 

rest frame to frame k attached to the vertex where the 

particle line is attached. 

B. (0,l) boosts 81, R2, B3 transform from frames 1 to 2, 3 

to 4 and 5 to 6 respectively. 
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C. A combination of an (1,2) rotation w12 (Wan) and a (0,3) 

boost Cl2 (c,,) transforms from frame 2 to 3 (4 to 5). 

The boosts nik can be expressed in terms of masses m. and 1 

the ti e.g. 

2 2 2 
sinh n21 = 

Ql-ml+m2 

2Qlm2 ' 

The boosts Cl,, 5,, can also be expressed in terms of the mi 

and the ti e.g. 

2 2 2 

coshC12 = 
Ql+Q2+m3 

2Q,Q, ' 

The variables 8,, 8,, B3, w12 and w23 are parameters and can 

be used to express any of the external momenta in any frame 

e.g. in frame 1 

p2 = (m2coshn21,0,0,m2sinhn21) , 

in frame 2 

P2 = (m2coshq21cosh81, m2coshn21sinh81,0,m2sinhn21) 

in frame 3 

P2 = (m2coshn21cosh81cosh~12-m2sinhn21sinh~12 I 

in frame 4 
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and so on. To evaluate P.P. 
= I 

we simply have to transform both 

momenta from their rest frames to a common frame. For 

example, to evaluate P2*P5 we can use frame 4 where P2 has 

the form given above and P5 has a form analagous to that of 

P2 in frame 3 but with Bl+-B3, w12+-w23, [,,+-c,,. This 

leads to 



-46- FERMILAB-Pub-82/19-THY 

p2'Fs = [m2cosh~2lcosh81cosh~l2cosh~2-m2sinh~2lsinh~l2~osh~2 

{[m2coshq2lcosh~12-m2cosh~2lcos~l2~X[m5Cosh~~6~osh~23~ 
zl=coshB +m 1 
s2=CoshB2+m +[m2coshn21cos~12+m2cosh~2l~osh~l2~~~m~~osh~~6~osw23 11 

z =coshB -tm 3 3 
xzlz2z3 

'25 
= - '1'2'3 2 

where '25 = m2m5coshn21coshn56[cosh~12cosh~23-coso12cosh~23 

+ cash< 12 cosw23+COSW12COSW231 . 

Clearly any other cij can be similarly evaluated. 
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APPENDIX B. MULTIPLE DISCONTINUITY FORiVULAE 

For completeness we give here exact formulae for the 

triple discontinuities Ax(s ,S 
% x2 

,sh ) appearing in (4.24). 
3 

To do this we must introduce some notation. 

For the full s-matrix we write 

s ( P, -**pm; Pm+,“~“P,) = im”” (B1) 

while for s + we replace the + by a - and for the unit 

operator we replace the + by I. We make the usual cluster 

decomposition e.g. 

032) 

so that a bubble represents a connected amplitude together 

with a momentum conservation B-function. A phase-space 

integration and sum represented by a shaded strip is a 

unitarity sum over intermediate states e.g. 

-r-$-J777 
That is the strip implies a sum over all particle numbers N 

of intermediate lines, together with an integration or sum 

over all distinct sets of variables associated with these 

lines 
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7m= $ = .ITl ; J J, pi4 (WA+ 
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Pj2-mZ)C.ZJ (B3) 

wheremis the inverse of the usual symmetry number of the 

state. Let us further define 

(B4) 

We can now define 3-fold discontinuities as follows 

A(sxl,,s2 ,s13) = A(...sXl+io,sX2+io,si3+io,...) 

-A(...s~ -io,s* +io,sI +iO,...) 
1 2 3 

-A(...s~ +io,s x-io,s l io,...) 
1 2 x3 

-A(...s~ +io,s x+io,s A-io,...) 
1 2 3 

+A(...s~ -io,sI -iO,Sx +iO,...) 
1 2 3 

+A(...sI -io,sk +iO,Sx -iO,...) 
1 2 3 

+A(...sI +io,sA -io,sx -iO,...) 
1 2 3 

-A(...s~ 
1 

-io,sx -iO,Sx -iO,...) 
2 3 

u36) 
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The generalized Steinmann relations imply that this 

triple discontinuity is independent of the boundary values 

of the invariants other than sx ,s~ ,sx . In a 2-4 physical 
12 3 

region the sx, will be a triad of the form listed in (4.22). 
1 

These are of two kinds, either two 2-particle channels and 

the total energy, for example s23, s45 and s2345 in this 

case 

(2-rr14 s(~Pi)n(S,,,S4,,S,,,,) = 

(87) 

t-1 

where we define 

(B9) 

and similarly 

@lo) 

Alternatively the three sx are nested, 
1 

for example s23, 

s234r 
s2345 and in this case 
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2 
"4 (B11) 
5 

U312) 

In a 3-3 physical region the sx will be a triad of the form 
i 

listed in (4.23). Again there are two possibilities, Both 

contain an initial 2-particle channel and a final 2-particle 

channel with either the total energy as a third invariant, 

for example s23, s14 and s236 in which case 

6 
"2 (Bl3) 

IZ- 

=- 

(Bl4) 

(Bl5) 

OK the third invariant is a cross-energy,, for example s14, 

'36 and s 365 in which case 
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( 277-14 a(? Pi 1 A(S,,,S,,,S,,, ) 

(Bl7) 

All possible triple discontinuities needed for (4.24) are of 

one of the four forms (B7), (Bg), (Bll) or (814). The 

alternative formulae given are always obtained by simple 

applications of unitarity. 
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FIGURE CAPTIONS 

Fig. 1.1 The Cauchy Integration Contour for (1.2)--the 

Domain D is the compliment of the shaded region. 

Fig. 3.1 A Toller diagram for a process with sinatemal 

particles. 

Fig. 3.2 The reversal of the sign of 'i changes the 

physical region to that represented by the 

Toller Diagram obtained by twisting through 180° 

the two parts of the diagram linked by the line 

1. 

Fig. 5.1 Three surfaces lm 21=0, lm z2=0 and lm z1+z2=o 

intersect on the real region 2 12 , 

lm zl=lm z2=O]. A slight shift of each surface 

shifts the intersection of each pair of surfaces 

to a distinct 2-dimensional region. 

Fig. 6.1 Bad boundary-values. The four dashed lines 

correspond to the cuts and the + sign (- sign) 

at the end of a dashed line represents the fact 

that the boundary value is to be taken above 

(below) the associated cut. 

Fig. 6.2 Asymptotically equivalent cuts become distinct 

sub-asymptotically and expose a region 

associated with a bad boundary-value. 
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